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ABSTRACT 

 
Active tuned mass damper (ATMD) systems have attracted the considerable attention of 
researchers for protecting buildings subjected to earthquake loading. This paper presentes 
the development of an optimal sliding mode control (OSMC) system for a building equipped 
with ATMD. In the OSMC technique, a linear sliding surface is used with the slope of this 
surface designed such that a given (or desired) cost function is minimized. The design is 
obtained by transforming the system into the regular form. In the regular form, the system is 
divided into two subsystems inclding: a control term explicitly appears, and other control 
terms do not appear. In order to demonstrate the capability of the OSMC system, an 11–
story realistic building with a TMD installed on the top story of the structure is considered. 
For achieving this purpose, four well–known earthquake records are selected to evaluate the 
performance of the OSMC system. Results show that the OSMC technique performs better 
than other control techniques in the reduction of seismic responses of the structure. 
 
Keywords: active tuned mass damper; optimal sliding mode control; cost function. 
 
Received: 20 July 2019; Accepted: 12 November 2019 
 
 

1. INTRODUCTION 
 
The efficiency of active, hybrid and passive control methods for the control of civil 
engineering structures have been demonstrated in order to protect them subjected to 
environmental loads (i.e., wind and earthquake) [1, 2]. The main aim of the control systems 
is to reduce the structural responses, damages and demands.  
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Tuned mass dampers (TMDs) as the oldest passive seismic control devices are tuned with 
a vibration frequency close to the fundamental frequency of structures. The TMD system 
consists of a mass, spring, and a viscous damper attached to a vibrating main system in order 
to attenuate any undesirable vibrations. Due to the uncertainty in determining the parameters 
of structure (i.e. its mass and stiffness), accurately assigning the natural frequency of the 
structure is not possible. Therefore, the efficient performance of the TMD system is 
attenuated and their application is limited in a narrow range of load frequencies [3]. In order 
to overcome these shortcomings, active TMDs (ATMDs) have been proposed [4 , 5]. 

In a structure equipped with an ATMD, an actuator installed between the structure and 
the TMD system applies a control force in real time to the ATMD and its reaction is applied 
to the structure. The selection of a suitable control scheme for tuning the control force has 
been considered as a key role in the successful application of an ATMD system. By 
selecting an effective control scheme, a suitable trade–off can be also provided between two 
conflicting objective of reducing control force and reducing structural responses. The most 
common control methods for this case are linear quadratic regulator (LQR) [2], linear 
quadratic Gaussian (LQG) [6, 7], H2 and H  [8–10], fuzzy logic controller (FLC) [11–14], 
and PID controller [15–17]. 

The sliding mode control (SMC) technique as a nonlinear method was introduced for the 
active control of civil structures by Yang et al. [18] and Adhikari and Yamaguchi [19], and 
is based on high–frequency switching. Because of the variable structure of the SMC 
technique, it has the capable of switching between different control laws. Since SMC is not 
sensitive against changes and external excitation, the selection of the method in comparison 
with other control techniques has been considered as the best scheme [20].  

This paper deals with the development of an optimal sliding mode control (OSMC) 
system for a building equipped with ATMD. In this technique, a linear sliding surface, 
which passes through the origin, is used with the slope of this surface designed such that a 
given (or desired) cost function is minimized. The design is started by transforming the 
system into the regular form. In the regular form, the system is divided into two subsystems 
including: (1) a control term explicitly appears, and (2) other control terms do not appear. In 
order to prove the validity of  OSMC, an 11–story realistic building with a TMD installed on 
the top floor of the structure is considered. For this end, four well–known earthquake records 
are adopted to evaluate the performance of OSMC. The simulation results show that the 
OSMC technique performs better than LQR, PID controllers in reduction of seismic 
responses of the structure. 

 
 

2. EQUATIONS OF MOTION 

2.1 Structure equipped with a TMD 

An N–degree–of–freedom linear structure equipped with a TMD, installed on the top floor, 
subjected to excitation acceleration, ( ),xg t  is considered. The equation of motion of the 

structure can be written as: 
 

( ) ( ) ( ) ( )x x x xgt t t t  M C K M r    (1)
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where M, C, K and x are the mass, damping, and stiffness matrices and the displacement 
vector with the below formulations: 
 

1 2( ) = {      }T
N dt x x x xx  (2)

1 2(   )  M N ddiag m m m m   (3)
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(4)

 
In addtition, kd and md are the stiffness coefficient and the mass of TMD. r is the 

 1 1N    vector of ones which represented the location vector of the earthquake excitation. 

According to the Rayleigh damping method, the structural damping matrix C can be 
assumed to be proportional to the mass and stiffness matrices as shown in Eq. (5). 

 

         
1 2

1 2 1 2

2 2 
   

 
 

C M K  (5)

 
in which ω1 and ω2 are the structural frequencies in first and second modes, respectively. In 
addition, ξ is the critical damping ratio for the first two modes. 
 
2.2 Structure equipped with an ATMD 

For a building subjected to ground excitations and equipped with an active control system, 
the linear equations of motion can be written in matrix form as: 

 
( ) ( ) ( ) ( ) ( )M C K M r Dgt t t t u t   x x x x    (6)

 
where ( ) u t R is the control force. Also, D is an N×1 location vector for the control forces. 
Vector D is defined based on the location of actuators in the structure.  

In a structure equipped with an ATMD situated on the top story, an actuator, which is 
placed between the structure and the TMD system, applies a control force in real time to 
ATMD and its reaction applied to the top story of the structure. The equation of the 
structural system can be written in the standard state–space form as shown in Eq. (7): 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

X AX B H AX B

GX

     



u x u E

y

  


gt t t t t t t

t t
 (7)

 
in which 



M. Khatibinia, M. Mahmoudi and H. Eliasi 

 

4 

( )
( )

( )
X

t
t

t

 
  
 

x

x



 (8)

 
In addition, the state matrix A, input matrix B, matrix H and output matrix G are given 

as: 
 

 
    
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M K M C
 (9)
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0
H

r
 (11)

 G I 0  (12)
 
 

3. OPTIMAL SILIDING MODE CONTROL 
 

3.1.An overview of SMC controller 

Sliding mode control (SMC) is a robust control technique that alters the dynamics of a 
system by application of a discontinuous control signal. The control signal forces the system 
to slide along a cross–section of the system's normal behavior. Controllers–based SMC are 
designed to drive the system states onto a particular surface in the state space called sliding 
surface [21]. Once the sliding surface is reached, SMC keeps the states on the close 
neighborhood of the sliding surface. Hence, SMC is a two–part controller design. The first 
part involves the design of a sliding surface so that the sliding motion satisfies design 
specifications. The second part is concerned with the selection of a control law that will 
make the switching surface attractive to the system state. From a practical point of view, 
SMC can be used for controlling nonlinear processes subject to external disturbances and 
heavy model uncertainties. 

The main advantages of SMC contain two issues. First, the dynamic behavior of a system 
may be tailored by the particular choice of the sliding function. Secondly, the closed loop 
response becomes totally insensitive to some particular uncertainties. This principle extends 
to model parameter uncertainties, disturbance and non–linearity [21]. The most significant 
factors of the SMC technique are Reaching Mode (RM), Sliding Mode (SM) and Steady 
State Mode (SSM). The terms have very specific meanings. Starting from the initial 
condition, the phase trajectory is attracted to the sliding manifold during the RM. Once the 
phase trajectory hits the manifold it slides towards the origin of the phase plane called SM. 
Then, the phase trajectory stays at the origin and steady state is achieved. The whole 
exercise of designing the SMC law requires a fairly good mathematical model of the system. 
The switching component in the SMC law is desired in most of the cases to ensure the phase 
trajectory does not leave the sliding manifold and thus it reaches origin. Once the trajectory 
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reaches to sliding phase, the system dynamics are governed by the surface dynamics and 
hence, the system is immune to external bounded disturbances [21]. 

 
3.2.Design of optimal SMC  

In order to design the optimal SMC (OSMC), the sliding surface is defined as [21]: 
 

S 0 PX  (13)
 
where  S R is the sliding variable. P is a (1 )N matrix to be determined such that the motion 
on the sliding surface is stable.  

The OSMC technique makes S equal to zero in finite time and then maintain the 
condition S=0 for all future time. In other words, OSMC consists of a reaching mode, during 
which the sliding variable moves to the sliding surface, and a sliding mode, during which the 
sliding variable is confined to the sliding surface and S has no variation from sliding surface 
in system without uncertainty. In OSMC, the control input is designed as follow [21]: 

 

reach equ u u   (14)
 

where  reachu  is the reaching control law.  
This part of control law is selected such that outside the surface S, the following sliding 

condition holds, 
 

21
S S

2

d

dt
   (15)

 
where   is a positive constant. This condition forces all trajectories to slide toward the 
surface S.  

Fig. 1 shows the reaching mode schematically. equ is an equivalent control law which can 

be found by setting S 0  in absence of external disturbance ( )tE and considering Eq. (13). 
This control law keeps the response trajectory of system on sliding surface, once it reaches 
there. It follows from Eqs. (7) and (13) that 

 

S ( ) 0PX P AX B equ       (16)

 
The solution of Eq. (16) yields the closed from of equ as follows: 

 
1( )PB PAXequ     (17)

 

Now, in order to satisfy sliding condition (12) despite external disturbance ( ),tE   reachu is 
considered as follows: 

 
 1( ) Sreachu k sgn  PB  (18)
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Figure 1. Phase plane and reaching mode in OSMC 

 
where k is a positive constant and ( )k t E . ( )sign  is the sign function. From (7), (15), (17) 

and (18), it is obtained as: 
 

        SS ( )S SE  t k  (19)
 

So that, letting ( )k sup t  E  leads to satisfy sliding condition (15). One systematic 

approach for the determination of the matrix P is to use the method of LQR. This method is 
based on minimizing the integral of the quadratic function of the state vector as follows [21]: 

 

'( ) ( )
t

J d  


 X Q X   (20)

 
in which 

 
' 11 12' '
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where ' 2 1

1
nR X and '

2X .R
11Q and 22Q are (2 1) (2 1)N N   and1 1 matrices, respectively.  

Since the system (7) is single input and in regular form, let A and P be partitioned as 
follows: 

 

          11 12
1 2

21 22

;    P
 

  
 

A A
A P

A A
P   (22)

 
in which 2211 1, ,A PA a nd 2P  are (2 1) (2 1)N N    and1 1 matrices,1 (2 1)N   vector and 
scalar, respectively.  Substituting (22) into (7) and (13), one can be represented the equations 
of motion on the sliding surface as follows: 
 

1 11 1 12 2X A X AX    (23)

1 1 2 2S P X 0  P X   (24)

 
From Eqs. (23) and (24), the following equation is obtained: 
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1
1 11 12 2 1 1( P )A A P XX     (25)

 
Since P2 is scalar, the simplest choice for P2 is the unit. Hence, Eq. (25) can be rewritten 

as follows: 
 

1 11 12 1 1( ) A A P XX   (26)

 
The matrix 1P must be determined such that the motion on the sliding surface is stable. 

After determining 1P , the unknown matrix P is obtained from Eq. (22).  
According to the LQR method, minimizing the performance index J given by Eq. (20) 

subjected to the constraint of the equations of motion, Eq. (23) results the following solution 
[21]: 

 

 1 '
2 22 12 21 1

1
X  Q 2

2
 A P Q X    (27)

 
where P is a (2 1) (2 1)N N   matrix and the solution of the following matrix Riccati 
equation: 

 

 1 ' 1 '
12 22 12 11 12 22 120.5 Q 2      A P PA PA A P Q Q Q Q      (28)

 
in which 1

11 12 22 21.Q A A A Q   

Considering 2P 1, Eq. (27) yeilds 2 1 1X . P X   Comparing this result and Eq. (27), one 
obtains: 
 

1 '
1 22 12 210 ( ).5Q 2 P A P Q  (29)

 
Finally, the matrix P in Eq. (13) is obtained as follows: 
 

 1 1P P   (30)
 

3.3.Reduction of control force chattering 

The control law (i.e. Eq. (18)) which satisfies the sliding condition (Eq. (15)) is 
discontinuous across the surface S( )t , thus leading in practice to control force chattering. In 
general, chattering is highly undesirable, since it involves extremely high control activity, 
and furthermore may excite high–frequency dynamics neglected in the course of modeling 
[22]. In order to attenuate the chattering phenomenon, in this study a hyperbolic tangent 

function ( )
.

tanh


was used instead of the sign function ( ).sgn �  φ is a boundary layer. The 

sign and hyperbolic tangent functions for different values of φ, are shown in Fig. 2. The 
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smooth performance of hyperbolic tangent function reduces the chattering effect in control 
law. In this study, the boundary layer is chosen 0.05. 

 

 
Figure 2. Sign and hyperbolic tangent functions 

 
 

4. NUMERICAL STURY 
 

4.1. Properties of structure 

An 11–story realistic building, located in the city of Rasht, Iran, is considered for the 
numerical study [12]. By assuming a rigid diaphragm for each of floor levels, a simplified 
linear model of the realistic building (known as a shear–type building model) is considered 
as a 2–dimensional shear building. By installing a TMD on the top story, 12 degrees of 
freedom are adopted to describe the total displacement of the stories of the structure and 
TMD/ATMD system. The adopted control scheme consists of an ATMD placed on the top 
floor of the building. From the first to the top floors, the mass of the stories are 215, 201, 
201, 200, 201, 201, 201, 203, 203, 203 and 176 tons, respectively. The corresponding 
stiffness coefficients are 468, 476, 468, 450, 450, 450, 450, 437, 437, 437 and 312 MN/m, 
respectively. The first and second natural frequencies of the uncontrolled structure are equal 
to as ω1= 6.5727 and ω2 = 19.355 rad/s, respectively. By assuming the structural damping 
ratio as the 5% of the critical damping value for the first two modes i.e. ξ = 0.05, the 
damping matrix can be calculated using the Rayleigh damping method in Eq. (5). 
 
4.2. Properties of TMD and ATMD 

For the TMD system, the frequency ratio, βd, is assumed to be the ratio of the natural 
frequency of the TMD to the first modal frequency of the main structure. In addition, the 
mass of the TMD is chosen to be αd–percent of the total mass of the building and the 
damping ratio of the TMD is considered to be d –percent of the critical damping value. The 

optimal values of αd, d  and βd were determined by a genetic algorithm in Ref. [12] and 
were equal to 3%, 7% and 1.0, respectively. For the ATMD system, the optimal values of αd, 

d  and βd are also considered as 3%, 7% and 1.0, respectively.  
 

4.3. Design of sliding surface 

In order to design the OSMC technique, the coefficients of the sliding surface are 
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determined using the LQR method with a diagonal weighting matrix Q. The matrix Q 
regulates the penalties on the excursion in the trajectories of the sliding variable (S). Indeed, 
the random selection of Q in the OSMC controller can not provide the good set point 
tracking the performance due to the absence of integral term unlike the PID controller. 
Therefore, the selection of the matrix Q has been considered as the key problem in the 
design of SMC using the LQR method. Conventionally, control engineers often select the 
weighting matrices based on trial and error procedure, which not only makes the design 
tedious but also provides a non–optimized response. Hence, there is a need to a systematic 
approach in the selection the weighting matrix Q.  

In the previous studies [12, 16, 17], it was not presented any straightforward procedure 
for this problem. For overcoming this problem, an approach was to use a simple iteration 
algorithm for optimizing the elements of matrix Q [22]. But, this method suggests the way 
to only choose the initial values of the weighting matrices, and after the first trial the values 
of the weighting matrices are to be iterated to get the optimal response, which once again 
leads to manual tuning. Another approach was to select the elements of matrix Q based on 
parameters of structure and TMD such as their damping and stiffness. In this study, the 
matrix Q was considered as a diagonal matrix and its main diagonal elements were selected 
as follows: 
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 (31)

 
where dc is the damping of TMD. , 1, ,ic i N  presents the damping of ithe story of 

structure.  1  and 2  are the design parameters.  
It is noted that the above form of the matrix Q represents the sum of the kinetic and 

damping energies, and it is commonly adopted in structural control applications. In this 
study, 1 and 2 are equal to 0.17 and 0.02, respectively.  

 
4.4. Results of structural control 

In order to demonstrate the performance of the OSMC controller in comparison with other 
control strategies in the literature, the controlled structure with the ATMD system was 
assessed subjected to two far–fault earthquakes, El Centro (1940) and Hachinohe (1968), as 
well as two near–fault earthquakes, Northridge (1994) and Kobe (1995). The peak ground 
acceleration (PGA) of theses earthquakes are equal to 0.83, 0.22, 0.34 and 0.82g [12]. Time–
history analyses of the structure are carried out using MATLAB/Simulink software [23]. 

Tables 1 to 4 compare the maximum displacement of stories for the structure controlled 
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by the SMC controller subjected to El Centro, Hachinohe, Kobe and Northridge earthquake 
excitations, respectively. In the tables, the results of the structure controlled by OSMC are 
also compared with those given by the uncontrolled structure (Unctrl), the structure 
equipped with TMD (Passive), LQR [12], FLC [12] and PID [24]. 

 
Table 1: Comparison of the performance of the different controllers in El Centro earthquake 

Story 

Maximum responses of stories (m) Parentage of reduction (%) 

Unctrl Passive 
LQR  
[12] 

FLC 
 [12] 

PID  
[24] 

OSMC Passive 
LQR 
 [12] 

FLC 
 [12] 

PID 
 [24] 

OSMC 

1 0.019 0.013 0.009 0.009 0.014 0.008 31.6 52.6 52.6 26.3 57.9 

2 0.039 0.025 0.018 0.016 0.028 0.016 35.9 53.8 59.0 28.2 59.0 

3 0.057 0.037 0.027 0.023 0.041 0.024 35.1 52.6 59.6 28.1 57.9 

4 0.074 0.048 0.035 0.028 0.053 0.032 35.1 52.7 62.2 28.4 56.8 

5 0.090 0.058 0.043 0.034 0.064 0.041 35.6 52.2 62.2 28.9 54.4 

6 0.100 0.067 0.050 0.039 0.074 0.047 34.4 51.0 61.8 27.5 53.0 

7 0.120 0.074 0.058 0.043 0.081 0.053 38.3 51.7 64.2 32.5 55.8 

8 0.130 0.083 0.060 0.047 0.087 0.058 36.2 53.9 63.9 33.1 55.4 

9 0.140 0.094 0.067 0.049 0.091 0.062 32.9 52.1 65.0 35.0 55.7 

10 0.140 0.094 0.070 0.050 0.094 0.064 32.9 50.0 64.3 32.9 54.3 

11 0.147 0.099 0.072 0.051 0.096 0.065 32.7 51.0 65.3 34.7 55.8 

Average 0.096 0.063 0.046 0.035 0.066 0.043 34.6 52.1 61.8 30.5 56.0 

 
Table 2: Comparison of the performance of the different controllers in Hachinohe earthquake 

Story 
Maximum responses of stories (m) Parentage of reduction (%) 

Unctrl Passive 
LQR 
[12] 

FLC 
[12] 

PID 
[24] 

OSMC Passive 
LQR 
[12] 

FLC 
[12] 

PID 
[24] 

OSMC 

1 0.014 0.012 0.011 0.008 0.008 0.011 14.3 21.0 42.9 42.9 21.4 

2 0.028 0.024 0.021 0.017 0.015 0.021 14.3 25.0 39.3 46.4 25.0 

3 0.040 0.035 0.032 0.024 0.022 0.030 12.5 20.0 40.0 45.0 25.0 

4 0.053 0.046 0.041 0.030 0.027 0.039 13.2 22.6 43.4 49.1 26.4 

5 0.064 0.055 0.050 0.036 0.031 0.047 14.1 21.9 43.8 51.6 26.6 

6 0.074 0.064 0.058 0.040 0.036 0.052 13.5 21.6 45.9 51.4 29.7 

7 0.085 0.073 0.065 0.046 0.042 0.057 14.1 23.5 45.9 50.6 32.9 

8 0.094 0.081 0.071 0.050 0.047 0.062 13.8 24.5 46.8 50.0 34.0 

9 0.100 0.089 0.076 0.053 0.052 0.066 11.0 24.0 47.0 48.0 34.0 

10 0.110 0.095 0.079 0.055 0.055 0.068 13.6 28.2 50.0 50.0 38.2 

11 0.110 0.099 0.083 0.057 0.058 0.070 10.0 24.5 48.2 47.3 36.4 

Average 0.070 0.061 0.053 0.038 0.036 0.048 13.1 23.3 44.8 48.4 30.0 

 
As can be seen from Tables 1 to 4, the OMSC controller reduces the maximum 

displacement of the top stroy (roof) responses of the structure about 55.8%, 36.4%, 37% and 
5.2% in comparison with that of the uncontrolled structure subjected to El Centro, 
Hachinohe, Kobe and Northridge earthquakes. Therefore, the numerical results demonstrate 
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that OSMC can significantly control the structure subjected to earthquakes. Similarly, it is 
obvious from Table 1 to 4, OSMC in comparison with LQR indicates the better performance 
in the reduction of the seismic responses.  

 
Table 3: Comparison of the performance of the different controllers in Kobe earthquake 

Story 
Maximum responses of stories (m) Parentage of reduction (%) 

Unctrl Passive 
LQR 
[12] 

FLC 
[12]

PID 
[24]

OSMC Passive 
LQR 
[12]

FLC 
[12] 

PID 
[24] 

OSMC 

1 0.060 0.049 0.050 0.046 0.050 0.037 18.3 16.7 23.3 16.7 38.3 
2 0.120 0.098 0.101 0.092 0.100 0.075 18.3 15.8 23.3 16.7 37.5 
3 0.180 0.149 0.144 0.131 0.144 0.113 17.2 20.0 27.2 20.1 37.2 
4 0.240 0.199 0.192 0.180 0.191 0.151 17.1 20.0 25.0 20.6 37.1 
5 0.290 0.238 0.241 0.229 0.231 0.186 17.9 16.9 21.0 20.3 35.9 
6 0.340 0.289 0.269 0.258 0.272 0.219 15.0 20.9 24.1 20.0 35.6 
7 0.390 0.332 0.308 0.293 0.306 0.248 14.9 21.0 24.9 21.5 36.4 
8 0.430 0.361 0.344 0.335 0.338 0.273 16.0 20.0 22.1 21.5 36.5 
9 0.460 0.391 0.363 0.354 0.359 0.293 15.0 21.1 23.0 21.9 36.3 
10 0.480 0.408 0.374 0.360 0.375 0.306 15.0 22.1 25.0 21.9 36.3 
11 0.500 0.420 0.390 0.370 0.384 0.315 16.0 22.0 26.0 23.1 37.0 

Average 0.317 0.267 0.252 0.241 0.250 0.201 16.4 19.7 24.1 20.4 36.7 

 
Table 4: Comparison of the performance of the different controllers in Northridge earthquake 

Story 
Maximum responses of stories (m) Parentage of reduction (%) 

Unctrl Passive 
LQR 
[12] 

FLC 
[12] 

PID 
[24] 

OSMC Passive 
LQR 
[12] 

FLC 
[12] 

PID 
[24] 

OSMC 

1 0.046 0.040 0.033 0.031 0.032 0.032 13.0 28.3 32.6 29.6 30.4 
2 0.088 0.080 0.063 0.058 0.062 0.059 9.1 28.4 34.1 30.0 33.0 
3 0.123 0.109 0.109 0.080 0.087 0.083 11.4 11.4 35.0 28.9 32.5 
4 0.150 0.140 0.110 0.099 0.107 0.103 6.7 26.7 34.0 28.7 31.3 
5 0.180 0.160 0.130 0.119 0.126 0.119 11.1 27.8 33.9 29.8 33.9 
6 0.194 0.178 0.149 0.130 0.143 0.138 8.2 23.2 33.0 26.5 28.9 
7 0.204 0.190 0.169 0.139 0.156 0.155 6.9 17.2 31.9 23.8 24.0 
8 0.210 0.200 0.181 0.143 0.165 0.169 4.8 13.8 31.9 21.3 19.5 
9 0.220 0.220 0.189 0.156 0.168 0.188 0.0 14.1 29.1 23.4 14.5 
10 0.230 0.230 0.209 0.168 0.188 0.204 0.0 9.1 27.0 18.3 11.3 
11 0.230 0.230 0.219 0.170 0.207 0.218 0.0 4.8 26.1 9.8 5.2 

Average 0.170 0.162 0.142 0.118 0.131 0.133 6.5 18.6 31.7 24.6 24.1 

 
In order to compare the performance of TMD (Passive) and ATMD achieved by other 

control methods, the average of the reductions in the displacement of all stories is depicted in 
Fig. 3 for different earthquake excitations. Furthermore, the total average of the reductions in 
the displacement of all stories for TMD and different controllers are displayed in Fig. 3.  

It is found from Fig. 3 that ATMD in comparison with TMD can significantly control the 
the structure for a wide range of earthquakes with various intensities and frequency.It 
reveals from Fig. 3 that OSMC controller in comparison with the LQR and PID controllers 
provides the best performance in reducing the maximum displacement of all stroies of the 
structure. Based on the total average reduction of the maximum displacement for  all stroies 
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shown in Fig. 3, the the total average reduction for the OSMC controller is equal to 36.7%, 
while this value the LQR and PID controllers are equal to 28.4% and 31%, respectively. It is 
noted that the total average for the FLC controller is equal to 40.6%, which slightly is better 
than that of the OSMC controller. 

 

 
Figure 3. The average reduction of maximum structural responses for all stories 

 
Figs. 4 to 7 show the comparison of the displacement time history of the top story for the 

structure equipped with TMD and ATMD controlled by the OSMC scheme. As can be seen 
from Figs. 4 to 7, the OSMC controller efficiently reduces the maximum displacement of the 
structure subjected to different earthquake excitations. 

 

 
Figure 4. The comparison of the displacement time history of the top story for the structure 

equipped with TMD and ATMD controlled by OSMC during El Centro earthquake 
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Figure 5. The comparison of the displacement time history of the top story for the structure 

equipped with TMD and ATMD controlled by OSMC during Hachinohe earthquake 
 

 
Figure 6. The comparison of the displacement time history of the top story for the structure 

equipped with TMD and ATMD controlled by OSMC during Kobe earthquake 
 

 
Figure 7. The comparison of the displacement time history of the top story for the structure 

equipped with TMD and ATMD controlled by OSMC during Northridge earthquake 
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5. CONCLUSIONS 
 

This paper focused on the development of  an optimal sliding mode control (OSMC) for the 
reduction of the seismic responses of a building subjected to earthquake excitations using 
the ATMD system. In the OSMC technique, a linear sliding surface, which passed through 
the origin, was used with the slope of this surface designed such that a given (or desired) 
cost function was minimized. For the numerical study, an 11–story realistic shear building 
equppied with a TMD (as a passive system) was considered subjected to different 
earthquake excitations and the efficiency of the OSMC technique was demonstrated. As 
well, the performance of OMSC was compared with that of the LQR, FLC and PID 
contorollers. The numerical results indicated that OSMC was more effective than the passvie 
controller system (TMD). Furthermore, the total average reduction of the displacements of 
the building for all studied earthquake excitations was adopted for the comparison of the 
performance of the controllers. The OSMC controller provided a reduction about 36.7%, 
while this value for LQR and PID controllers is 28.4% and 31%, respectively. Therefore, the 
OSMC controller performed better than LQR and PID controllers in the mitigation of the 
sructural responses. The total average for the FLC controller was also equal to 40.6%, which 
slightly was better than that of the OSMC controller. 
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